Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Metab Eng ; 61: 315-325, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687991

RESUMO

One-carbon (C1) compounds, such as methanol, have recently gained attention as alternative low-cost and non-food feedstocks for microbial bioprocesses. Considerable research efforts are thus currently focused on the generation of synthetic methylotrophs by transferring methanol assimilation pathways into established bacterial production hosts. In this study, we used an iterative combination of dry and wet approaches to design, implement and optimize this metabolic trait in the most common chassis, E. coli. Through in silico modelling, we designed a new route that "mixed and matched" two methylotrophic enzymes: a bacterial methanol dehydrogenase (Mdh) and a dihydroxyacetone synthase (Das) from yeast. To identify the best combination of enzymes to introduce into E. coli, we built a library of 266 pathway variants containing different combinations of Mdh and Das homologues and screened it using high-throughput 13C-labeling experiments. The highest level of incorporation of methanol into central metabolism intermediates (e.g. 22% into the PEP), was obtained using a variant composed of a Mdh from A. gerneri and a codon-optimized version of P. angusta Das. Finally, the activity of this new synthetic pathway was further improved by engineering strategic metabolic targets identified using omics and modelling approaches. The final synthetic strain had 1.5 to 5.9 times higher methanol assimilation in intracellular metabolites and proteinogenic amino acids than the starting strain did. Broadening the repertoire of methanol assimilation pathways is one step further toward synthetic methylotrophy in E. coli.


Assuntos
Oxirredutases do Álcool , Aldeído-Cetona Transferases , Proteínas de Bactérias , Escherichia coli , Proteínas Fúngicas , Engenharia Metabólica , Metanol/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído-Cetona Transferases/genética , Aldeído-Cetona Transferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética
2.
FEMS Yeast Res ; 19(6)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408151

RESUMO

The construction of a methanol-free expression system of Komagataella phaffii (Pichia pastoris) was attempted by engineering a strong methanol-inducible DAS1 promoter using Citrobacter braakii phytase production as a model case. Constitutive expression of KpTRM1, formerly PRM1-a positive transcription regulator for methanol-utilization (MUT) genes of K. phaffii,was demonstrated to produce phytase without addition of methanol, especially when a DAS1 promoter was used but not an AOX1 promoter. Another positive regulator, Mxr1p, did not have the same effect on the DAS1 promoter, while it was more effective than KpTrmp1 on the AOX1 promoter. Removing a potential upstream repression sequence (URS) and multiplying UAS1DAS1 in the DAS1 promoter significantly enhanced the yield of C. braakii phytase with methanol-feeding, which surpassed the native AOX1 promoter by 80%. However, multiplying UAS1DAS1 did not affect the yield of methanol-free expression by constitutive KpTrm1p. Another important region to enhance the effect of KpTrm1p under a methanol-free condition was identified in the DAS1 promoter, and was termed ESPDAS1. Nevertheless, methanol-free phytase production using an engineered DAS1 promoter outperformed phytase production with the GAP promoter by 25%. Difference in regulation by known transcription factors on the AOX1 promoter and the DAS1 promoter was also illustrated.


Assuntos
6-Fitase/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Engenharia Genética , Pichia/genética , Regiões Promotoras Genéticas/genética , Oxirredutases do Álcool/genética , Aldeído-Cetona Transferases/genética , Expressão Gênica , Plasmídeos/genética , Fatores de Transcrição/genética , tRNA Metiltransferases/genética
3.
Appl Biochem Biotechnol ; 186(4): 949-959, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29797298

RESUMO

Taxoid 10ß-O-acetyl transferase (DBAT) is a key enzyme in the biosynthesis of the famous anticancer drug paclitaxel, which catalyses the formation of baccatin III from 10-deacetylbaccatin III (10-DAB). However, the activity essential residues of the enzyme are still unknown, and the acylation mechanism from its natural substrate 10-deacetylbaccatin III and acetyl CoA to baccatin III remains unclear. In this study, the homology modelling, molecular docking, site-directed mutagenesis, and kinetic parameter determination of the enzyme were carried out. The results showed that the enzyme mutant DBATH162A resulted in complete loss of enzymatic activity, suggesting that the residue histidine at 162 was essential to DBAT activity. Residues D166 and R363 which were located in the pocket of the enzyme by homology modelling and molecular docking were also important for DBAT activity through the site-directed mutations. Furthermore, four amino acid residues including S31 and D34 from motif SXXD, D372 and G376 from motif DFGWG also played important roles on acylation. This was the first report of the elucidation of the activity essential residues of DBAT, making it possible for the further structural-based re-design of the enzyme for efficient biotransformation of baccatin III and paclitaxel.


Assuntos
Acetilcoenzima A/química , Aldeído-Cetona Transferases/química , Alcaloides/síntese química , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Taxoides/síntese química , Taxus/enzimologia , Aldeído-Cetona Transferases/genética , Alcaloides/química , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Paclitaxel/síntese química , Paclitaxel/química , Proteínas de Plantas/genética , Taxoides/química , Taxus/genética
4.
ACS Chem Biol ; 12(1): 92-101, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103676

RESUMO

Capsular polysaccharide A (CPSA) is a four-sugar repeating unit polymer found on the surface of the gut symbiont Bacteroides fragilis that has therapeutic potential in animal models of autoimmune disorders. This therapeutic potential has been credited to its zwitterionic character derived from a positively charged N-acetyl-4-aminogalactosamine (AADGal) and a negatively charged 4,6-O-pyruvylated galactose (PyrGal). In this report, using a fluorescent polyisoprenoid chemical probe, the complete enzymatic assembly of the CPSA tetrasaccharide repeat unit is achieved. The proposed pyruvyltransferase, WcfO; galactopyranose mutase, WcfM; and glycosyltransferases, WcfP and WcfN, encoded by the CPSA biosynthesis gene cluster were heterologously expressed and functionally characterized. Pyruvate modification, catalyzed by WcfO, was found to occur on galactose of the polyisoprenoid-linked disaccharide (AADGal-Gal), and did not occur on galactose linked to uridine diphosphate (UDP) or a set of nitrophenyl-galactose analogues. This pyruvate modification was also found to be required for the incorporation of the next sugar in the pathway N-acetylgalactosamine (GalNAc) by the glycosyltransferase WcfP. The pyruvate acetal modification of a galactose has not been previously explored in the context of a polysaccharide biosynthesis pathway, and this work demonstrates the importance of this modification to repeat unit assembly. Upon production of the polyisoprenoid-linked AADGal-PyrGal-GalNAc, the proteins WcfM and WcfN were found to work in concert to form the final tetrasaccharide, where WcfM formed UDP-galactofuranose (Galf) and WcfN transfers Galf to the AADGal-PyrGal-GalNAc. This work demonstrates the first enzymatic assembly of the tetrasaccharide repeat unit of CPSA in a sequential single pot reaction.


Assuntos
Bacteroides fragilis/enzimologia , Bacteroides fragilis/metabolismo , Vias Biossintéticas , Polissacarídeos Bacterianos/metabolismo , Acetilgalactosamina/genética , Acetilgalactosamina/metabolismo , Aldeído-Cetona Transferases/genética , Aldeído-Cetona Transferases/metabolismo , Animais , Bacteroides fragilis/química , Bacteroides fragilis/genética , Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Família Multigênica , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética
5.
Sci Rep ; 6: 26349, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194449

RESUMO

Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1p(H168C)) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering.


Assuntos
Aldeído-Cetona Transferases/química , Aldeído-Cetona Transferases/genética , Oligossacarídeos/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Engenharia de Proteínas/métodos , Dobramento de Proteína , Piruvatos/química , Schizosaccharomyces/genética , Especificidade por Substrato
6.
Tuberculosis (Edinb) ; 95(6): 689-694, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26547230

RESUMO

We compared phenotypes of five strains of Mycobacterium tuberculosis (Mtb) differing in their expression of rv1248c and its product, 2-hydroxy-3-oxoadipate synthase (HOAS), with a focus on carbon source-dependent growth rates and attenuation in mice. Surprisingly, an rv1248c transposon mutant on a CDC1551 background grew differently than an rv1248c deletion mutant on the same background. Moreover, the same rv1248c deletion in two different yet genetically similar strain backgrounds (CDC1551 and H37Rv) gave different phenotypes, though each could be complemented. Whole genome re-sequencing did not provide an obvious explanation for these discrepancies. These observations offer a cautionary lesson about the strength of inference from complementation and sequence analysis, and commend consideration of more complex phenomena than usually contemplated in Mtb, such as epigenetic control.


Assuntos
Aldeído-Cetona Transferases/genética , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Mycobacterium tuberculosis/genética , Deleção de Sequência , Tuberculose Pulmonar/microbiologia , Aldeído-Cetona Transferases/metabolismo , Animais , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Genótipo , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fenótipo , Fatores de Tempo
7.
Plant Physiol Biochem ; 89: 53-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25698666

RESUMO

The overexpression of dihydroxyacetone synthase (DAS) and dihydroxyacetone kinase (DAK) from methylotrophic yeasts in chloroplasts created a photosynthetic formaldehyde (HCHO)-assimilation pathway (DAS/DAK pathway) in transgenic tobacco. Geranium has abilities to absorb and metabolize HCHO. Results of this study showed that the installed DAS/DAK pathway functioning in chloroplasts greatly enhanced the role of the Calvin cycle in transgenic geranium under high concentrations of gaseous HCHO stress. Consequently, the yield of sugars from HCHO-assimilation increased approximately 6-fold in transgenic geranium leaves, and concomitantly, the role of three original HCHO metabolic pathways reduced, leading to a significant decrease in formic acid, citrate and glycine production from HCHO metabolism. Although the role of three metabolic pathways reduced in transgenic plants under high concentrations of gaseous HCHO stress, the installed DAS/DAK pathway could still function together with the original HCHO metabolic pathways. Consequently, the gaseous HCHO-resistance of transgenic plants was significantly improved, and the generation of H2O2 in the transgenic geranium leaves was significantly less than that in the wild type (WT) leaves. Under environmental-polluted gaseous HCHO stress for a long duration, the stomata conductance of transgenic plants remained approximately 2-fold higher than that of the WT, thereby increasing its ability to purify gaseous HCHO polluted environment.


Assuntos
Adaptação Fisiológica/genética , Aldeído-Cetona Transferases/genética , Poluentes Ambientais/metabolismo , Formaldeído/metabolismo , Geranium/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plantas Geneticamente Modificadas/genética , Aldeído-Cetona Transferases/metabolismo , Biodegradação Ambiental , Cloroplastos/metabolismo , Gases/metabolismo , Expressão Gênica , Genes Fúngicos , Geranium/metabolismo , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Leveduras/genética
8.
Mol Phylogenet Evol ; 75: 154-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24602988

RESUMO

Despite intense scrutiny from researchers in the fields of biochemistry and metabolism, our understanding of the evolutionary history of the key anabolic shikimate pathway remains limited. To shed light on the early evolutionary events leading to the assembly of the pathway, we investigated the distributions, domain architectures and phylogenies of component enzymes using a bioinformatic procedure based on Hidden Markov Model profiles. The aro genes for the canonical shikimate pathway had most wider distribution in prokaryotes; and the variant pathway coordinated by 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid (ADH) synthase and type II 3-dehydroquinate (DHQ) synthase could be identified in most of archaeal species. In addition, the ancient bidirectional horizontal gene transfer events had happened between two prokaryotic domains: Bacteria and Archaea. Besides 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, the phylogenetically distinct subfamilies of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase and chorismate synthase had ever emerged in the evolutionary history of shikimate pathway. These findings provide new insight into the early evolution of the shikimate pathway and advance our understanding of the evolution of metabolic pathways.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Biológica , Filogenia , Ácido Chiquímico/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Aldeído-Cetona Transferases/genética , Archaea/enzimologia , Bactérias/enzimologia , Biologia Computacional , Transferência Genética Horizontal , Cadeias de Markov , Redes e Vias Metabólicas/genética , Família Multigênica , Fósforo-Oxigênio Liases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteoma/análise , Análise de Sequência de DNA
9.
Biochem J ; 457(3): 425-34, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24171907

RESUMO

α-Ketoacid dehydrogenases are large multi-enzyme machineries that orchestrate the oxidative decarboxylation of α-ketoacids with the concomitant production of acyl-CoA and NADH. The first reaction, catalysed by α-ketoacid decarboxylases (E1 enzymes), needs a thiamine diphosphate cofactor and represents the overall rate-limiting step. Although the catalytic cycles of E1 from the pyruvate dehydrogenase (E1p) and branched-chain α-ketoacid dehydrogenase (E1b) complexes have been elucidated, little structural information is available on E1o, the first component of the α-ketoglutarate dehydrogenase complex, despite the central role of this complex at the branching point between the TCA (tricarboxylic acid) cycle and glutamate metabolism. In the present study, we provide structural evidence that MsKGD, the E1o (α-ketoglutarate decarboxylase) from Mycobacterium smegmatis, shows two conformations of the post-decarboxylation intermediate, each one associated with a distinct enzyme state. We also provide an overall picture of the catalytic cycle, reconstructed by either crystallographic snapshots or modelling. The results of the present study show that the conformational change leading the enzyme from the initial (early) to the late state, although not required for decarboxylation, plays an essential role in catalysis and possibly in the regulation of mycobacterial E1o.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Processamento de Proteína Pós-Traducional , Redobramento de Proteína , Adipatos/química , Adipatos/metabolismo , Aldeído-Cetona Transferases/química , Aldeído-Cetona Transferases/genética , Aldeído-Cetona Transferases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Descarboxilação , Complexo Cetoglutarato Desidrogenase/química , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 288(30): 21688-702, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760263

RESUMO

Allosteric regulation often controls key branch points in metabolic processes. Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase (HOAS), a thiamin diphosphate (ThDP)-dependent enzyme, produces 2-hydroxy-3-oxoadipate using 2-ketoglutarate and glyoxylate. The proposed chemical mechanism in analogy with other ThDP-dependent carboligases involves multiple ThDP-bound covalent intermediates. Acetyl coenzyme A is an activator, and GarA, a forkhead association domain-containing protein known to regulate glutamate metabolism, is an allosteric inhibitor of HOAS. Steady state kinetics using assays to study the first half and the full catalytic cycle suggested that the regulators act at different steps in the overall mechanism. To explore the modes of regulation and to test the effects on individual catalytic steps, we performed circular dichroism (CD) studies using a non-decarboxylatable 2-ketoglutarate analog and determined the distribution of ThDP-bound covalent intermediates during the steady state of the HOAS reaction using one-dimensional (1)H gradient carbon heteronuclear single quantum coherence NMR. The results suggest that acetyl coenzyme A acts as a mixed V and K type activator and predominantly affects the predecarboxylation steps. GarA does not inhibit the formation of the predecarboxylation analog and does not affect the accumulation of the postdecarboxylation covalent intermediate derived from 2-ketoglutarate; however, it decreases the abundance of the product ThDP adduct in the HOAS pathway. Thus, the two regulators act on different halves of the catalytic cycle in an unusual regulatory regime.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxo-Ácido-Liases/metabolismo , Tiamina Pirofosfato/metabolismo , Acetilcoenzima A/metabolismo , Adipatos/química , Adipatos/metabolismo , Aldeído-Cetona Transferases , Algoritmos , Regulação Alostérica , Proteínas de Bactérias/genética , Biocatálise , Dicroísmo Circular , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Glioxilatos/química , Glioxilatos/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Mycobacterium tuberculosis/genética , Oxo-Ácido-Liases/genética , Especificidade por Substrato , Tiamina Pirofosfato/química
11.
Appl Environ Microbiol ; 79(12): 3860-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563945

RESUMO

csaB gene analysis clustered 198 strains of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis into two groups related to mammalian and insect hosts, respectively. Mammal-related group I strains also have more S-layer homology (SLH) protein genes than group II strains. This indicates that csaB-based differentiation reflects selective pressure from animal hosts.


Assuntos
Aldeído-Cetona Transferases/genética , Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Bacillus thuringiensis/enzimologia , Evolução Molecular , Variação Genética/genética , Seleção Genética , Bacillus anthracis/genética , Bacillus cereus/genética , Bacillus thuringiensis/genética , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
12.
FEBS Lett ; 587(7): 917-21, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23422075

RESUMO

N-Glycan from the fission yeast Schizosaccharomyces pombe contains outer-chain pyruvic acid 4,6-ketal-linked galactose (PvGal). Here, we characterized a putative S. pombe pyruvyltransferase, Pvg1p, reported to be essential for biosynthesis of PvGal. When p-nitrophenyl-ß-Gal (pNP-ß-Gal) was used as a substrate, the structure of the recombinant Pvg1p product was determined to be pNP-PvGal by one- and two-dimensional NMR spectroscopy. The recombinant Pvg1p transferred pyruvyl residues from phosphoenolpyruvate specifically to ß-linked galactose.


Assuntos
Aldeído-Cetona Transferases/metabolismo , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Galactosiltransferases/metabolismo , Ácido Pirúvico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aldeído-Cetona Transferases/genética , Transporte Biológico , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas Fúngicas/genética , Galactosiltransferases/genética , Cinética , Espectroscopia de Ressonância Magnética/métodos , Mutação , Fosfoenolpiruvato/metabolismo , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato , Transferases
13.
In. Cardellá Rosales, Lidia. Bioquímica Médica. Tomo I. La Habana, Ecimed, 2013. , graf, tab.
Monografia em Espanhol | CUMED | ID: cum-55950
14.
Microb Cell Fact ; 11: 22, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22330134

RESUMO

UNLABELLED: ΒACKGROUND: The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. RESULTS: A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. CONCLUSIONS: Co-overexpressing enzymes of the methanol utilization pathway significantly affected the specific growth rate, the methanol uptake and the specific productivity of recombinant P. pastoris MutS strains. A recently developed methodology to determine strain specific parameters based on dynamic batch cultivations proved to be a valuable tool for fast strain characterization and thus early process development.


Assuntos
Engenharia Genética , Metanol/metabolismo , Pichia/enzimologia , Proteínas Recombinantes/biossíntese , Aldeído Oxirredutases/metabolismo , Aldeído-Cetona Transferases/metabolismo , Proteínas Fúngicas , Peroxidase do Rábano Silvestre/genética , Peroxidase do Rábano Silvestre/metabolismo , Lipase/genética , Lipase/metabolismo , Fenótipo , Pichia/genética , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Transcetolase/metabolismo
15.
Bioorg Med Chem Lett ; 20(22): 6472-4, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20943392

RESUMO

The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deazaThDP without use of protecting groups. Tribromo-3-methylthiophene served as a versatile starting material whose selective functionalization permitted access to deazaThDP in five steps, with potential to make other analogs accessible in substantial amounts.


Assuntos
Compostos Aza/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Oxo-Ácido-Liases/antagonistas & inibidores , Tiamina/síntese química , Tiamina/farmacologia , Aldeído-Cetona Transferases , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Tiamina/análogos & derivados
16.
Biosci Biotechnol Biochem ; 74(7): 1491-3, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622431

RESUMO

The methylotrophic yeast Pichia methanolica possesses two genes, PmDAS1 and PmDLP1, whose amino acid sequences show high similarity to dihydroxyacetone synthase (DAS), the formaldehyde-fixing enzyme for methanol metabolism within the peroxisome. The PmDAS1 and PmDLP1 genes encode 709 and 707 amino acid residues respectively, and PmDas1p contains a type-1 peroxisomal targeting signal (PTS1), while PmDlp1p does not. Upon phylogenetic analysis, PmDas1p fit into the DAS group with other DASs, while PmDlp1p was grouped with the DAS-like proteins (DLP) of non-methylotrophic yeasts and fungi, a branch of the phylogenetic tree independent of the DAS and transketolase (TK) groups. While expression of PmDAS1 restored the methylotrophic growth of the Candida boidinii das1Delta strain, the PmDLP1 and PmDAS1-DeltaPTS1 genes did not. Taken together, these results indicate that PmDAS1 encodes a functional DAS and has an indispensable role in methanol metabolism, and that PmDlp1p share a common, as yet uncharacterized function in P. methanolica as well as in non-methylotrophic yeasts and fungi.


Assuntos
Aldeído-Cetona Transferases/genética , Genes Fúngicos/genética , Pichia/genética , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Filogenia , Alinhamento de Sequência
17.
FEMS Yeast Res ; 10(5): 535-44, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491943

RESUMO

We identified a gene, designated TRM2, responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. The encoded protein Trm2p contains two C(2)H(2)-type zinc finger motifs near the N terminus and shows high similarity to Saccharomyces cerevisiae Adr1p and Pichia pastoris Mxr1p. A C. boidinii gene-disrupted strain (trm2Delta) could not grow on methanol or oleate, but could grow on glucose or ethanol. Trm2p was necessary for the activation of five methanol-inducible promoters tested. Trm2p was localized to the nucleus during growth on nonfermentable carbon sources, but to the cytosol during growth on glucose. A chromatin immunoprecipitation assay revealed that Trm2p specifically bound to the promoters of the alcohol oxidase gene (AOD1) and the dihydroxyacetone synthase gene in cells grown on methanol or oleate, but did not bind to these promoters in cells grown on glucose. The derepressed level of expression of AOD1, which was observed in the trm1Delta strain (the TRM1 gene encodes a transcription factor responsible for methanol-specific gene activation), was decreased in the trm1Deltatrm2Delta strain to a level similar to that observed in the trm2Delta strain. These results suggest that Trm2p-dependent derepression is essential for the Trm1p-dependent methanol-specific gene activation in C. boidinii.


Assuntos
Candida/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Fatores de Transcrição/metabolismo , Oxirredutases do Álcool/genética , Aldeído-Cetona Transferases/genética , Candida/genética , Candida/metabolismo , Imunoprecipitação da Cromatina , DNA Fúngico/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Glucose/metabolismo , Ácido Oleico/metabolismo , Pichia/genética , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Dedos de Zinco/genética
18.
Chem Biol ; 17(4): 323-32, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20416504

RESUMO

Activity based metabolomic profiling (ABMP) allows unbiased discovery of enzymatic activities encoded by genes of unknown function, and applies liquid-chromatography mass spectrometry (LC-MS) to analyze the impact of a recombinant enzyme on the homologous cellular extract as a physiologic library of potential substrates and products. The Mycobacterium tuberculosis protein Rv1248c was incompletely characterized as a thiamine diphosphate-dependent alpha-ketoglutarate decarboxylase. Here, recombinant Rv1248c catalyzed consumption of alpha-ketoglutarate in a mycobacterial small molecule extract with matched production of 5-hydroxylevulinate (HLA) in a reaction predicted to require glyoxylate. As confirmed using pure substrates by LC-MS, (1)H-NMR, chemical trapping, and intracellular metabolite profiling, Rv1248c catalyzes C-C bond formation between the activated aldehyde of alpha-ketoglutarate and the carbonyl of glyoxylate to yield 2-hydroxy-3-oxoadipate (HOA), which decomposes to HLA. Thus, Rv1248c encodes an HOA synthase.


Assuntos
Metabolômica/métodos , Mycobacterium tuberculosis/enzimologia , Oxo-Ácido-Liases/metabolismo , Aldeído-Cetona Transferases , Mycobacterium tuberculosis/genética , Ressonância Magnética Nuclear Biomolecular
19.
Yeast ; 27(9): 705-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20198661

RESUMO

Expression of genes involved in methanol metabolism of Pichia pastoris is regulated by Mxr1p, a zinc finger transcription factor. In this study, we studied the target gene specificity of Mxr1p by examining its ability to bind to promoters of genes encoding dihydroxyacetone synthase (DHAS) and peroxin 8 (PEX8), since methanol-inducible expression of these genes is abrogated in mxr1-null mutant strains of P. pastoris. Different regions of DHAS and PEX8 promoter were isolated from P. pastoris genomic DNA and their ability to bind to a recombinant Mxr1p protein containing the N-terminal 150 amino acids, including the zinc finger DNA-binding domain, was examined. These studies reveal that Mxr1p specifically binds to promoter regions containing multiple 5'-CYCC-3' sequences, although all DNA sequences containing the 5'-CYCC-3' motif do not qualify as Mxr1p-binding sites. Key DNA-binding determinants are present outside 5'-CYCC-3' motif and Mxr1p preferably binds to DNA sequences containing 5'-CYCCNY-3' than those containing 5'-CYCCNR-3' sequences. This study provides new insights into the molecular determinants of target gene specificity of Mxr1p, and the methodology described here can be used for mapping Mxr1p-binding sites in other methanol-inducible promoters of P. pastoris.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Pichia/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Aldeído-Cetona Transferases/genética , Sequência de Bases , Sítios de Ligação , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Pichia/genética , Pichia/metabolismo , Ligação Proteica
20.
Biochim Biophys Acta ; 1804(6): 1369-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20170757

RESUMO

Acetohydroxyacid synthase (AHAS), a potential target for antimicrobial agents, catalyzes the first common step in the biosynthesis of the branched-chain amino acids. The genes of both catalytic and regulatory subunits of AHAS from Bacillus anthracis (Bantx), a causative agent of anthrax, were cloned, overexpressed in Escherichia coli, and purified to homogeneity. To develop novel anti-anthracis drugs that inhibit AHAS, a chemical library was screened, and four chemicals, AVS2087, AVS2093, AVS2387, and AVS2236, were identified as potent inhibitors of catalytic subunit with IC(50) values of 1.0 +/- 0.02, 1.0 +/- 0.04, 2.1 +/- 0.12, and 2.0 +/- 0.08 microM, respectively. Further, these four chemicals also showed strong inhibition against reconstituted AHAS with IC(50) values of 0.05 +/- 0.002, 0.153 +/- 0.004, 1.30 +/- 0.10, and 1.29 +/- 0.40 microM, respectively. The basic scaffold of the AVS group consists of 1-pyrimidine-2-yl-1H-[1,2,4]triazole-3-sulfonamide. The potent inhibitor, AVS2093 showed the lowest binding energy, -8.52 kcal/mol and formed a single hydrogen bond with a distance of 1.973 A. As the need for novel antibiotic classes to combat bacterial drug resistance increases, the screening of new compounds that act against Bantx-AHAS shows that AHAS is a good target for new anti-anthracis drugs.


Assuntos
Aldeído-Cetona Transferases/antagonistas & inibidores , Aldeído-Cetona Transferases/química , Antibacterianos/química , Bacillus anthracis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Pirimidinas/química , Aldeído-Cetona Transferases/genética , Aldeído-Cetona Transferases/metabolismo , Antraz/tratamento farmacológico , Antraz/enzimologia , Antibacterianos/uso terapêutico , Domínio Catalítico , Inibidores Enzimáticos/uso terapêutico , Ligação de Hidrogênio , Ligação Proteica , Pirimidinas/uso terapêutico , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...